
LECTURE PRESENTATIONS 

For CAMPBELL BIOLOGY, NINTH EDITION 
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson 

© 2011 Pearson Education, Inc. 

Lectures by 

Erin Barley 

Kathleen Fitzpatrick 

Cellular Respiration and 

Fermentation 

Chapter 9 



Overview: Life Is Work 

• Living cells require energy from outside 

sources 

• Some animals, such as the chimpanzee, obtain 

energy by eating plants, and some animals 

feed on other organisms that eat plants 
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Figure 9.1 



• Energy flows into an ecosystem as sunlight 

and leaves as heat 

• Photosynthesis generates O2 and organic 

molecules, which are used in cellular 

respiration 

• Cells use chemical energy stored in organic 

molecules to regenerate ATP, which powers 

work 
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Concept 9.1: Catabolic pathways yield 

energy by oxidizing organic fuels 

• Several processes are central to cellular 

respiration and related pathways 
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Catabolic Pathways and Production of ATP 

• The breakdown of organic molecules is 
exergonic 

• Fermentation is a partial degradation of 
sugars that occurs without O2 

• Aerobic respiration consumes organic 
molecules and O2 and yields ATP 

• Anaerobic respiration is similar to aerobic 
respiration but consumes compounds other 
than O2 

 

© 2011 Pearson Education, Inc. 



• Cellular respiration includes both aerobic and 

anaerobic respiration but is often used to refer to 

aerobic respiration 

• Although carbohydrates, fats, and proteins are all 

consumed as fuel, it is helpful to trace cellular 

respiration with the sugar glucose 

   C6H12O6 + 6 O2  6 CO2 + 6 H2O + Energy (ATP + heat) 
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Redox Reactions: Oxidation and Reduction 

• The transfer of electrons during chemical 

reactions releases energy stored in organic 

molecules 

• This released energy is ultimately used to 

synthesize ATP 
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The Principle of Redox 

• Chemical reactions that transfer electrons 

between reactants are called oxidation-reduction 

reactions, or redox reactions 

• In oxidation, a substance loses electrons, or is 
oxidized 

• In reduction, a substance gains electrons, or is 

reduced (the amount of positive charge is 

reduced) 
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Figure 9.UN02 
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• The electron donor is called the reducing 
agent 

• The electron receptor is called the oxidizing 
agent 

• Some redox reactions do not transfer electrons 
but change the electron sharing in covalent 
bonds 

• An example is the reaction between methane 
and O2 
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Oxidation of Organic Fuel Molecules During 

Cellular Respiration 

• During cellular respiration, the fuel (such as 

glucose) is oxidized, and O2 is reduced 
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Stepwise Energy Harvest via NAD+ and the 

Electron Transport Chain 

• In cellular respiration, glucose and other organic 

molecules are broken down in a series of steps 

• Electrons from organic compounds are usually 

first transferred to NAD+, a coenzyme 

• As an electron acceptor, NAD+ functions as an 

oxidizing agent during cellular respiration 

• Each NADH (the reduced form of NAD+) 

represents stored energy that is tapped to 

synthesize ATP 
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Figure 9.UN04 
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• NADH passes the electrons to the electron 

transport chain 

• Unlike an uncontrolled reaction, the electron 

transport chain passes electrons in a series of 

steps instead of one explosive reaction 

• O2 pulls electrons down the chain in an energy-

yielding tumble 

• The energy yielded is used to regenerate ATP 
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Figure 9.5 
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The Stages of Cellular Respiration: 

A Preview 

• Harvesting of energy from glucose has three 

stages 

– Glycolysis (breaks down glucose into two 

molecules of pyruvate) 

– The citric acid cycle (completes the 

breakdown of glucose) 

– Oxidative phosphorylation (accounts for 

most of the ATP synthesis) 
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Figure 9.UN05 
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Figure 9.6-2 
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Figure 9.6-3 
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• The process that generates most of the ATP is 

called oxidative phosphorylation because it is 

powered by redox reactions 
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• Oxidative phosphorylation accounts for almost 

90% of the ATP generated by cellular 

respiration 

• A smaller amount of ATP is formed in glycolysis 

and the citric acid cycle by substrate-level 

phosphorylation 

• For each molecule of glucose degraded to CO2 

and water by respiration, the cell makes up to 

32 molecules of ATP  
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Concept 9.2: Glycolysis harvests chemical 

energy by oxidizing glucose to pyruvate 

• Glycolysis  (“splitting of sugar”) breaks down 

glucose into two molecules of pyruvate 

• Glycolysis occurs in the cytoplasm and has two 

major phases 

– Energy investment phase 

– Energy payoff phase 

• Glycolysis occurs whether or not O2 is present 
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Figure 9.9-6 
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Figure 9.9-7 
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Figure 9.9-8 
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Figure 9.9-9 
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Figure 9.9c 
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Figure 9.9d 
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Concept 9.3: After pyruvate is oxidized, the 

citric acid cycle completes the energy-

yielding oxidation of organic molecules 

• In the presence of O2, pyruvate enters the 

mitochondrion (in eukaryotic cells) where the 

oxidation of glucose is completed 
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Oxidation of Pyruvate to Acetyl CoA 

• Before the citric acid cycle can begin, pyruvate 

must be converted to acetyl Coenzyme A 

(acetyl CoA), which links glycolysis to the citric 

acid cycle 

• This step is carried out by a multienzyme 

complex that catalyses three reactions 
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• The citric acid cycle, also called the Krebs 

cycle, completes the break down of pyruvate 

to CO2 

• The cycle oxidizes organic fuel derived from 

pyruvate, generating 1 ATP, 3 NADH, and 1 

FADH2 per turn 
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Figure 9.11 
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• The citric acid cycle has eight steps, each 

catalyzed by a specific enzyme 

• The acetyl group of acetyl CoA joins the cycle 

by combining with oxaloacetate, forming citrate 

• The next seven steps decompose the citrate 

back to oxaloacetate, making the process a 

cycle 

• The NADH and FADH2 produced by the cycle 

relay electrons extracted from food to the 

electron transport chain 
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Figure 9.12-2 
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Figure 9.12-3 
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Figure 9.12-4 
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Figure 9.12-5 
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Figure 9.12-6 
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Figure 9.12-7 
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Figure 9.12-8 
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Figure 9.12a 
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Figure 9.12b 
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Figure 9.12c 
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Figure 9.12d 
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Concept 9.4: During oxidative 

phosphorylation, chemiosmosis couples 

electron transport to ATP synthesis 

• Following glycolysis and the citric acid cycle, 

NADH and FADH2 account for most of the 

energy extracted from food 

• These two electron carriers donate electrons to 

the electron transport chain, which powers ATP 

synthesis via oxidative phosphorylation 
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The Pathway of Electron Transport 

• The electron transport chain is in the inner 

membrane (cristae) of the mitochondrion 

• Most of the chain’s components are proteins, 

which exist in multiprotein complexes 

• The carriers alternate reduced and oxidized 

states as they accept and donate electrons 

• Electrons drop in free energy as they go down 

the chain and are finally passed to O2, forming 

H2O 
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Figure 9.13 
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• Electrons are transferred from NADH or FADH2 

to the electron transport chain 

• Electrons are passed through a number of 

proteins including cytochromes (each with an 

iron atom) to O2 

• The electron transport chain generates no ATP 

directly 

• It  breaks the large free-energy drop from food 

to O2 into smaller steps that release energy in 

manageable amounts 
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Chemiosmosis: The Energy-Coupling 

Mechanism 

• Electron transfer in the electron transport chain 

causes proteins to pump H+ from the 

mitochondrial matrix to the intermembrane space 

• H+ then moves back across the membrane, 

passing through the proton, ATP synthase  

• ATP synthase uses the exergonic flow of H+ to 

drive phosphorylation of ATP 

• This is an example of chemiosmosis, the use of 

energy in a H+ gradient to drive cellular work 
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Figure 9.15 
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• The energy stored in a H+ gradient across a 

membrane couples the redox reactions of the 

electron transport chain to ATP synthesis 

• The H+ gradient is referred to as a proton-

motive force, emphasizing its capacity to do 

work 
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An Accounting of ATP Production by 

Cellular Respiration 

• During cellular respiration, most energy flows 

in this sequence:  

 glucose  NADH  electron transport chain 

 proton-motive force  ATP 

• About 34% of the energy in a glucose molecule 

is transferred to ATP during cellular respiration, 

making about 32 ATP 

• There are several reasons why the number of 

ATP is not known exactly 
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Figure 9.16 
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Concept 9.5: Fermentation and anaerobic  

respiration enable cells to produce ATP 

without the use of oxygen 

• Most cellular respiration requires O2 to produce 

ATP 

• Without O2, the electron transport chain will 

cease to operate 

• In that case, glycolysis couples with 

fermentation or anaerobic respiration to 

produce ATP 
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• Anaerobic respiration uses an electron 

transport chain with a final electron acceptor 

other than O2, for example sulfate 

• Fermentation uses substrate-level 

phosphorylation instead of an electron 

transport chain to generate ATP 
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Types of Fermentation 

• Fermentation consists of glycolysis plus 

reactions that regenerate NAD+, which can be 

reused by glycolysis 

• Two common types are alcohol fermentation 

and lactic acid fermentation 
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• In alcohol fermentation, pyruvate is converted 

to ethanol in two steps, with the first releasing 

CO2 

• Alcohol fermentation by yeast is used in 

brewing, winemaking, and baking 
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• In lactic acid fermentation, pyruvate is reduced 

to NADH, forming lactate as an end product, 

with no release of CO2 

• Lactic acid fermentation by some fungi and 

bacteria is used to make cheese and yogurt 

• Human muscle cells use lactic acid 

fermentation to generate ATP when O2 is 

scarce 
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(b) Lactic acid fermentation 
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Comparing Fermentation with Anaerobic 

and Aerobic Respiration 

• All use glycolysis (net ATP = 2) to oxidize glucose 
and harvest chemical energy of food 

• In all three, NAD+ is the oxidizing agent that 
accepts electrons during glycolysis 

• The processes have different final electron 
acceptors: an organic molecule (such as pyruvate 
or acetaldehyde) in fermentation and O2 in cellular 
respiration 

• Cellular respiration produces 32 ATP per glucose 
molecule; fermentation produces 2 ATP per 
glucose molecule  
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• Obligate anaerobes carry out fermentation or 

anaerobic respiration and cannot survive in the 

presence of O2 

• Yeast and many bacteria are facultative 

anaerobes, meaning that they can survive 

using either fermentation or cellular respiration 

• In a facultative anaerobe, pyruvate is a fork in 

the metabolic road that leads to two alternative 

catabolic routes 
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Figure 9.18 
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The Evolutionary Significance of Glycolysis 

• Ancient prokaryotes are thought to have used 

glycolysis long before there was oxygen in the 

atmosphere 

• Very little O2 was available in the atmosphere 

until about 2.7 billion years ago, so early 

prokaryotes likely used only glycolysis to 

generate ATP 

• Glycolysis is a very ancient process 
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Concept 9.6: Glycolysis and the citric acid 

cycle connect to many other metabolic 

pathways 

• Gycolysis and the citric acid cycle are major 

intersections to various catabolic and anabolic 

pathways 
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The Versatility of Catabolism 

• Catabolic pathways funnel electrons from many 

kinds of organic molecules into cellular 

respiration 

• Glycolysis accepts a wide range of 

carbohydrates 

• Proteins must be digested to amino acids; 

amino groups can feed glycolysis or the citric 

acid cycle 

 

© 2011 Pearson Education, Inc. 



• Fats are digested to glycerol (used in 

glycolysis) and fatty acids (used in generating 

acetyl CoA)  

• Fatty acids are broken down by beta oxidation 

and yield acetyl CoA 

• An oxidized gram of fat produces more than 

twice as much ATP as an oxidized gram of 

carbohydrate 
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Figure 9.19 
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Biosynthesis (Anabolic Pathways) 

• The body uses small molecules to build other 

substances 

• These small molecules may come directly 

from food, from glycolysis, or from the citric 

acid cycle 
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Regulation of Cellular Respiration via 

Feedback Mechanisms 

• Feedback inhibition is the most common 

mechanism for control 

• If ATP concentration begins to drop, 

respiration speeds up; when there is plenty 

of ATP, respiration slows down 

• Control of catabolism is based mainly on 

regulating the activity of enzymes at 

strategic points in the catabolic pathway 
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Figure 9.20 
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Figure 9.UN06 
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Figure 9.UN07 
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Figure 9.UN08 
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Figure 9.UN09 
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Figure 9.UN10 
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Figure 9.UN11 


